Swim-like motion of bodies immersed in an ideal fluid
نویسندگان
چکیده
The connection between swimming and control theory is attracting increasing attention in the recent literature. Starting from an idea of Alberto Bressan [8] we study the system of a planar body whose position and shape are described by a finite number of parameters, and is immersed in a 2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by the Riemann Mapping Theorem. We face a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any direction if it can undergo shape changes without any bound on their velocity. This interesting observation, together with the analysis of the controllability of this system, seems innovative. 1991 Mathematics Subject Classification. 74F10, 74L15, 76B99, 76Z10. The dates will be set by the publisher. Introduction In this work we are interested in studying the self-propulsion of a deformable body in a fluid. This kind of systems is attracting an increasing interest in recent literature. Many authors focus on two different type of fluids. Some of them consider swimming at micro scale in a Stokes fluid [2,4–6,27,35,40], because in this regime the inertial terms can be neglected and the hydrodynamic equations are linear. Others are interested in bodies immersed in an ideal incompressible fluid [8,18,23,30,33] and also in this case the hydrodynamic equations turn out to be linear. We deal with the last case, in particular we study a deformable body -typically a swimmer or a fishimmersed in an ideal and irrotational fluid. This special case has an interesting geometric nature and there is an attractive mathematical framework for it. We exploit this intrinsically geometrical structure of the problem inspired by [39, 40] and [32], in which they interpret the system in terms of gauge field on the space of shapes. The choice of taking into account the inertia can apparently lead to a more complex system, but neglecting the viscosity the hydrodynamic equations are still linear, and this fact makes the system more manageable. The same fluid regime and existence of solutions of these hydrodynamic equations has been studied in [18] regarding the motion of rigid bodies. We start from an early idea of Alberto Bressan [8] and some unpublished developments, according to which the shape changes can be described by a finite number of parameters. These kind of systems, where the controls are
منابع مشابه
A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملA viscous vortex particle method for deforming bodies with application to biolocomotion
Bio-inspired mechanics of locomotion generally consist of the interaction of flexible structures with the surrounding fluid to generate propulsive forces. In this work, we extend, for the first time, the viscous vortex particle method (VVPM) to continuously deforming two-dimensional bodies. The VVPM is a high-fidelity Navier–Stokes computational method that captures the fluid motion through evo...
متن کاملLocomotion of Deformable Bodies in an Ideal Fluid: Newtonian versus Lagrangian Formalisms
This paper is concerned with comparing Newtonian and Lagrangian methods in Mechanics for determining the governing equations of motion (usually called Euler-Lagrange equations) for a collection of deformable bodies immersed in an incompressible, inviscid fluid whose flow is irrotational. The bodies can modify their shapes under the action of inner forces and torques and are endowed with thruste...
متن کاملSimulation of Fluid-Structure and Fluid-Mediated Structure-Structure Interactions in Stokes Regime Using Immersed Boundary Method
The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the ...
متن کاملPropulsion and Control of Deformable Bodies in an Ideal Fluid
Motivated by considerations of shape changing propulsion of underwater robotic vehicles, this paper analyses the mechanics of deformable bodies operating in an ideal fluid. The application of methods from geometric mechanics results in a compact and insightful formulation of the problem. We develop an explicit formula for the fluid mechanical connection, in terms of the fluid potential function...
متن کامل